Accurate, practical Excel predictive analysis: powerful smoothing techniques for serious data crunchers!
Â
In More Predictive Analytics, Microsoft Excel® MVP Conrad Carlberg shows how to use intuitive smoothing techniques to make remarkably accurate predictions. You won’t have to write a line of code--all you need is Excel and this all-new, crystal-clear tutorial.
Â
Carlberg goes beyond his highly-praised Predictive Analytics, introducing proven methods for creating more specific, actionable forecasts. You’ll learn how to predict what customers will spend on a given product next year… project how many patients your hospital will admit next quarter… tease out the effects of seasonality (or patterns that recur over a day, year, or any other period)… distinguish real trends from mere “noise.â€
Â
Drawing on more than 20 years of experience, Carlberg helps you master powerful techniques such as autocorrelation, differencing, Holt-Winters, backcasting, polynomial regression, exponential smoothing, and multiplicative modeling.
Â
Step by step, you’ll learn how to make the most of built-in Excel tools to gain far deeper insights from your data. To help you get better results faster, Carlberg provides downloadable Excel workbooks you can easily adapt for your own projects.
Â
If you’re ready to make better forecasts for better decision-making, you’re ready for More Predictive Analytics.
- Discover when and how to use smoothing instead of regression
- Test your data for trends and seasonality
- Compare sets of observations with the autocorrelation function
- Analyze trended time series with Excel’s Solver and Analysis ToolPak
- Use Holt's linear exponential smoothing to forecast the next level and trend, and extend forecasts further into the future
- Initialize your forecasts with a solid baseline
- Improve your initial forecasts with backcasting and optimization
- Fully reflect simple or complex seasonal patterns in your forecasts
- Account for sudden, unexpected changes in trends, from fads to new viral infections
- Use range names to control complex forecasting models more easily
- Compare additive and multiplicative models, and use the right model for each task