Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such a...

Buy Now From Amazon

Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories.

The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.



Similar Products

Toric Varieties (Graduate Studies in Mathematics)Intersection Theory, 2nd EditionRepresentation Theory: A First Course (Graduate Texts in Mathematics)Young Tableaux: With Applications to Representation Theory and Geometry (London Mathematical Society Student Texts)The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra (Graduate Texts in Mathematics)Algebraic Geometry (Graduate Texts in Mathematics)Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Graduate Texts in Mathematics)Birational Geometry of Algebraic Varieties (Cambridge Tracts in Mathematics)