In the nineteenth century, French mathematician Evariste Galois developed the Galois theory of groups-one of the most penetrating concepts in modem mathematics. The elements of the theory are clearly presented i...

Buy Now From Amazon

In the nineteenth century, French mathematician Evariste Galois developed the Galois theory of groups-one of the most penetrating concepts in modem mathematics. The elements of the theory are clearly presented in this second, revised edition of a volume of lectures delivered by noted mathematician Emil Artin. The book has been edited by Dr. Arthur N. Milgram, who has also supplemented the work with a Section on Applications.
The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more.
Dr. Milgram's section on applications discusses solvable groups, permutation groups, solution of equations by radicals, and other concepts.



Similar Products

The Gamma Function (Dover Books on Mathematics)Continued Fractions (Dover Books on Mathematics)Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger (Dover Books on Mathematics)Geometric Algebra (Dover Books on Mathematics)Riemann's Zeta FunctionBasic Algebra I: Second Edition (Dover Books on Mathematics)Basic Algebra II: Second Edition (Dover Books on Mathematics)Fourier Series (Dover Books on Mathematics)